Sunday, April 21, 2013

Awan

AWAN

Awan adalah massa terdiri dari tetesan air atau kristal beku tergantung di atmosfer di atas permukaan bumi atau tubuh planet lain. Awan juga massa terlihat yang tertarik oleh gravitasi, seperti massa materi dalam ruang yang disebut awan antar bintang dan nebula. Awan dipelajari dalam ilmu awan atau fisika awan, suatu cabang meteorologi.
Di Bumi substansi biasanya kondensasi uap air. Dengan bantuan partikel higroskopis udara seperti debu dan garam dari laut, tetesan air kecil terbentuk pada ketinggian rendah dan kristal es pada ketinggian tinggi bila udara didinginkan jadi jenuh oleh konvektif lokal atau lebih besar mengangkat non-konvektif skala.
Pada beberapa soal, awan tinggi mungkin sebagian terdiri dari tetesan air superdingin. Tetesan dan kristal biasanya sekitar 0,01 mm (0,00039 in) diameter. Paling umum dari pemanasan matahari di siang hari dari udara pada tingkat permukaan, angkat frontal yang memaksa massa udara lebih hangat akan naik lebih keatas dan mengangkat orografik udara di atas gunung. Ketika udara naik , mengembang sehingga tekanan berkurang.
Proses ini mengeluarkan energi yang menyebabkan udara dingin. Ketika dikelilingi oleh milyaran tetesan lain atau kristal mereka menjadi terlihat sebagai awan. Dengan tidak adanya inti kondensasi, udara menjadi jenuh dan pembentukan awan terhambat. dalam awan padat memperlihatkan pantulan tinggi (70% sampai 95%) di seluruh awan terlihat berbagai panjang gelombang, sehingga tampak putih, di atas.
Tetesan embun (titi-titik air) cenderung efisien menyebarkan cahaya, sehingga intensitas radiasi matahari berkurang dengan kedalaman arah ke gas, maka warna abu-abu atau bahkan gelap kadang-kadang tanpak di dasar awan. Awan tipis mungkin tampak telah memperoleh warna dari lingkungan mereka atau latar belakang dan awan diterangi oleh cahaya non-putih, seperti saat matahari terbit atau terbenam, mungkin tampak berwarna sesuai. Awan terlihat lebih gelap di dekat-inframerah karena air menyerap radiasi matahari pada saat- panjang gelombang .

Pembentukan awan

Udara selalu mengandung uap air. Apabila uap air ini meluap menjadi titik-titik air, maka terbentuklah awan. Peluapan ini bisa terjadi dengan dua cara:
  1. Apabila udara panas, lebih banyak uap terkandung di dalam udara karena air lebih cepat menyejat. Udara panas yang sarat dengan air ini akan naik tinggi, hingga tiba di satu lapisan dengan suhu yang lebih rendah, uap itu akan mencair dan terbentuklah awan, molekul-molekul titik air yang tak terhingga banyaknya.
  2. Suhu udara tidak berubah, tetapi keadaan atmosfer lembap. Udara makin lama akan menjadi semakin tepu dengan uap air.
Apabila awan telah terbentuk, titik-titik air dalam awan akan menjadi semakin besar dan awan itu akan menjadi semakin berat, dan perlahan-lahan daya tarik bumi menariknya ke bawah. Hingga sampai satu titik dimana titik-titik air itu akan terus jatuh ke bawah dan turunlah hujan.
Jika titik-titik air tersebut bertemu udara panas, titik-titik itu akan menguap dan awan menghilang. Inilah yang menyebabkan itu awan selalu berubah-ubah bentuknya. Air yang terkandung di dalam awan silih berganti menguap dan mencair. Inilah juga yang menyebabkan kadang-kadang ada awan yang tidak membawa hujan.

Keluarga-Keluarga Awan

Awan mempunyai beberapa jenis, yaitu: 1. Awan Cyrus 2. Awan Cumulus 3. Awan Stratus Para Pilot, biasanya sangat menakuti Awan Cumulus, karena katanya sih, didalam awan Cumulus terdapat banyak aliran listrik. Yang biasa kita saksikan sebagai Guntur.

Awan Tinggi (Keluarga A)

Bentuk awan tinggi antara 10.000 dan 25.000 kaki (3.000 dan 8.000 m) di daerah kutub , 16.500 dan 40.000 kaki (5.000 dan 12.000 m) di daerah beriklim sedang dan 20.000 dan 60.000 kaki (6.000 dan 18.000 m) di daerah tropis .
Awan di Keluarga A meliputi:
  • Genus Cirrus (Ci): gumpalan awan putihberserat kristal es halus yang terlihat jelas di langit biru. Secara umum non-konvektif kecuali castellanus dan spesies floccus.
    • Spesies fibratus Cirrus (Ci fi): cirrus berserat tanpa jumbai atau kait.
    • Spesies uncinus Cirrus (Ci UNC): Hooked cirrus filamen.
    • Spesies spissatus Cirrus (Ci spi): cirrus Patchy padat.
    • Spesies castellanus Cirrus (Ci cas): Sebagian cirrus menara.
    • Spesies floccus Cirrus (Ci flo): Sebagian cirrus berumbai.
  • Genus Cirrocumulus (Cc): lapisan awan yang tampak seperti ombak di pasir pantai, berbentuk bulat kecil atau serpih dan bewarna putih yang berkelompok atau berbaris.
    • Spesies Cirrocumulus stratiformis (Cc str): Sheets atau patch yang relatif datar cirrocumulus.
    • Spesies Cirrocumulus lenticularis (Cc len): Lens cirrocumulus berbentuk.
    • Spesies Cirrocumulus castellanus (Cc cas): cirrocumulus menara.
    • Spesies Cirrocumulus floccus (Cc flo): cirrocumulus berumbai.
  • Genus Cirrostratus (Cs): A non-konvektif cadar tipis yang biasanya menimbulkan halos. Matahari dan bulan terlihat di garis yang jelas. Biasanya mengental menjadi menjelang altostratus depan hangat atau daerah tekanan rendah.
    • Spesies Cirrostratus fibratus (Cs fib): cirrostratus berserat kurang terlepas dari cirrus.
    • Spesies Cirrostratus nebulosus (Cs neb): rata selubung cirrostratus.

Awan Tengah (Keluarga B)

Awan Tengah cenderung terbentuk pada 6.500 kaki (2.000 m), tetapi dapat terbentuk pada ketinggian sampai 13.000 kaki (4.000 m), 23.000 kaki (7.000 m) atau 25.000 kaki (8.000 m), tergantung pada daerah. Umumnya lebih hangat iklim, semakin tinggi dasar awan. Nimbostratus merupakan awan pada ketinggian menengah yang dapat bergerak turun hingga ketinggian rendah pada saat hujan. The World Meterological Organisasi mengklasifikasikan Nimbostratus sebagai awan menengah yang dapat mengentalkan ke dalam rentang ketinggian rendah selama hujan.

Awan Rendah (Keluarga C1)

Ini ditemukan dari dekat permukaan hingga 6.500 kaki (2.000 m) dan termasuk Stratus genus. Ketika awan Stratus kontak dengan tanah, mereka disebut kabut , meskipun tidak semua bentuk kabut dari Stratus.
Awan di Keluarga C1 meliputi:
  • Genus stratocumulus (Sc): awan konveksi yang sedikit biasanya dalam bentuk pola-pola tidak teratur atau bulat, mirip dengan altocumulus tetapi ukurannya lebih besar dan bewarna lebih gelap.
    • Spesies stratocumulus stratiformis (Sc str): Sheets atau patch yang relatif datar stratocumulus.
    • Spesies stratocumulus lenticularis (Sc len): Lens stratocumulus berbentuk.
    • Spesies stratocumulus castellanus (Sc cas): stratocumulus menara.
  • Genus Stratus (St): awan berlapisan seragam yang menyerupai kabut tetapi tidak menyentuh ke permukaan tanah (relatif tinggi).
    • Spesies nebulosus Stratus (St cotok): rata selubung Stratus.
    • Spesies Stratus fractus (St fra): kasar putus selembar Stratus.

Awan Rendah Tengah (Keluarga C2)

Awan ini dapat didasarkan manapun dari permukaan dekat sekitar 10.000 kaki (3.000 m). Cumulus biasanya bentuk pada rentang ketinggian rendah tapi dasar akan naik ke bagian bawah kisaran menengah saat kondisi kelembaban relatif sangat rendah. Nimbostratus biasanya bentuk dari altostratus di tengah rentang ketinggian tapi dasar mungkin mereda ke kisaran rendah selama precipitaion. Kedua jenis awan dapat mencapai ketebalan yang signifikan dan kadang-kadang diklasifikasikan sebagai awan vertikal (Keluarga D), terutama di Eropa.  Namun, cumulus biasa, menurut definisi, tidak sesuai dengan tingkat vertikal yang menjulang cumulus (kumulus congestus) atau paling cumulonimbus . Nimbostratus Sangat tebal dapat perkiraan cumulus menjulang, tetapi jatuh juga pendek tingkat vertikal awan cumulonimbus berkembang dengan baik.

Awan Vertikal (Keluarga D)

  • Genus cumulonimbus (Cb): awan dengan massa besar dan menjulang dari ketinggian rendah hingga sangat tinggi, rawan badai dan petir. Mereka membentuk dalam massa udara yang sangat stabil, khususnya sepanjang front yang bergerak cepat dingin.
    • Spesies calvus cumulonimbus (Cb cal): awan cumulonimbus dengan sangat tinggi memotong puncak kubah-jelas mirip dengan gumpalan awan yang menjulang tinggi.
    • Spesies capillatus cumulonimbus (Cb cap): awan cumulonimbus dengan puncak yang sangat tinggi yang telah menjadi berserat karena adanya kristal es.
Fitur Supplimentary inkus capillatus cumulonimbus (Cb ink cap): Sebuah cumulonimbus inkus atas awan adalah salah satu yang telah menyebar ke bentuk landasan yang jelas sebagai akibat dari memukul lapisan inversi di bagian atas troposfer. Fitur Supplimentary dengan mammatus cumulonimbus (Cb Mam): Sebuah dasar awan mammatus ditandai oleh gelembung-tonjolan ke bawah seperti menghadap disebabkan oleh downdrafts lokal dalam awan. WMO Resmi jangka cumulonimbus Mama.
Genus Cumulus (Cu)
  • Spesies Cumulus congestus (WMO: Cu Con / ICAO: TCU): awan dengan ukuran vertikal (lebar) yang besar dan bewarna gelap keabu-abuan.
  • Pyrocumulus (tidak ada singkatan resmi): awan Cumulus yang terkait dengan letusan gunung berapi dan kebakaran skala besar. Tidak diakui oleh WMO sebagai genus yang berbeda atau spesies.

sumber : http://id.wikipedia.org/wiki/Awan

Gerakan Air Laut

Arus air laut adalah pergerakan massa air secara vertikal dan horisontal sehingga menuju keseimbangannya, atau gerakan air yang sangat luas yang terjadi di seluruh lautan dunia. Arus juga merupakan gerakan mengalir suatu massa air yang dikarenakan tiupan angin atau perbedaan densitas atau pergerakan gelombang panjang. Pergerakan arus dipengaruhi oleh beberapa hal antara lain arah angin, perbedaan tekanan air, perbedaan densitas air, gaya Coriolis dan arus ekman, topografi dasar laut, arus permukaan, upwellng , downwelling.
Selain angin, arus dipengaruhi oleh paling tidak tiga faktor, yaitu :
  1. Bentuk Topografi dasar lautan dan pulau – pulau yang ada di sekitarnya : Beberapa sistem lautan utama di dunia dibatasi oleh massa daratan dari tiga sisi dan pula oleh arus equatorial counter di sisi yang keempat. Batas – batas ini menghasilkan sistem aliran yang hampir tertutup dan cenderung membuat aliran mengarah dalam suatu bentuk bulatan.
  1. Gaya Coriollis dan arus ekman : Gaya Corriolis memengaruhi aliran massa air, di mana gaya ini akan membelokkan arah mereka dari arah yang lurus. Gaya corriolis juga yangmenyebabkan timbulnya perubahan – perubahan arah arus yang kompleks susunannya yang terjadi sesuai dengan semakin dalamnya kedalaman suatu perairan.
  1. Perbedaan Densitas serta upwelling dan sinking : Perbedaan densitas menyebabkan timbulnya aliran massa air dari laut yang dalam di daerah kutub selatan dan kutub utara ke arah daerah tropik.
Adapun jenis – jenis arus dibedakan menjadi 2 bagian, yaitu :
  1. Berdasarkan penyebab terjadinya Arus ekman : Arus yang dipengaruhi oleh angin. Arus termohaline : Arus yang dipengaruhi oleh densitas dan gravitasi. Arus pasut : Arus yang dipengaruhi oleh pasut. Arus geostropik : Arus yang dipengaruhi oleh gradien tekanan mendatar dan gaya coriolis. Wind driven current : Arus yang dipengaruhi oleh pola pergerakan angin dan terjadi pada lapisan permukaan.
  1. Berdasarkan Kedalaman Arus permukaan : Terjadi pada beberapa ratus meter dari permukaan, bergerak dengan arah horizontal dan dipengaruhi oleh pola sebaran angin. Arus dalam : Terjadi jauh di dasar kolom perairan, arah pergerakannya tidak dipengaruhi oleh pola sebaran angin dan mambawa massa air dari daerah kutub ke daerah ekuator.
3.      Menurut letaknya arus dibedakan menjadi dua yaitu arus atas dan arus bawah. Arus atas adalah arus yang bergerak di permukaan laut. Sedangkan arus bawah adalah arus yang bergerak di bawah permukaan laut.
4.      Menurut suhunya kita mengenal adanya arus panas dan arus dingin. Arus panas adalah arus yang bila suhunya lebih panas dari daerah yang dilalui. Sedang kan arus dingin adalah arus yang suhunya lebih dingin dari daerah yang dilaluinya.
Pond dan Pickard 1983 mengklasifikasikan gerakan massa air berdasarkan penyebabnya, terbagi atas :
a. Gerakan dorongan angin
Angin adalah factor yang membangkitkan arus, arus yang ditimbulkan oleh angin mempunyai kecepatan yang berbeda menurut kedalaman. Kecepatan arus yang dibangkitkan oleh angin memiliki perubahan yang kecil seiring pertambahan kedalaman hingga tidak berpengaruh sama sekali.
b. Gerakan termohalin
Perubahan densitas timbul karena adanya perubahan suhu dan salinitas antara 2 massa air  yang densitasnya tinggi akan tenggelam dan menyebar di bawah permukaan air sebagai arus dalam dan sirkulasinya disebut arus termohalin.
c.Arus Pasang Surut
Arus yang disebabkan oleh gaya tarik menarik antara bumi dan benda benda angkasa. Arus pasut ini merupakan arus yang gerakannya horizontal.
d. Turbulensi
Suatu gerakan yang terjadi pada lapisan batas air dan terjadi karena adanya gaya gesekan antar lapisan.
e. Tsunami
Sering disebut sebagai gelombang seismic yang dihasilkan dari pergeseran dasar laut saat terjadi gempa.
f. Gelombang lain :
Selain pergerakan arah arus mendatar, angin dapat menimbulkan arus air vertikal yang dikenal dengan upwelling dan downwelling di daerah-daerah tertentu. Proses upwelling adalah suatu proses massa air yang didorong ke atas dari kedalaman sekitar 100 sampai 200 meter. Angin yang mendorong lapisan air permukaan mengakibatkan kekosongan di bagian atas, akibatnya air yang berasal dari bawah menggantikan kekosongan yang berada di atas. Oleh karena air yang dari kedalaman lapisan belum berhubungan dengan atmosfer, maka kandugan oksigennya rendah dan suhunya lebih dingin dibandingkan dengan suhu air permukaan lainnya. Walaupun sedikit oksigen, arus ini mengandung larutan nutrien seperti nitrat dan fosfat sehingga cederung mengandung banyak fitoplankton. Fitoplankton merupakan bahan dasar rantai makanan di lautan, dengan demikian di daerah upwelling umumnya kaya ikan.
Faktor Penyebab Terjadinya Arus
Terjadinya arus di lautan disebabkan oleh dua faktor utama, yaitu faktor internal dan faktor eksternal.  Faktor internal seperti perbedaan densitas air laut, gradien tekanan mendatar dan gesekan lapisan air. Sedangkan faktor eksternal seperti gaya tarik matahari dan bulan yang dipengaruhi oleh tahanan dasar laut dan gaya coriolis, perbedaan tekanan udara, gaya gravitasi, gaya tektonik dan angin ( Gross, 1990).
Menurut Bishop (1984), gaya-gaya utama  yang berperan dalam sirkulasi massa air adalah gaya gradien tekanan, gaya coriolis, gaya gravitasi, gaya gesekan, dan gaya sentrifugal.
Ketika angin berhembus di laut, energi yang ditransfer dari angin ke batas permukaan, sebagian energi ini digunakan dalam pembentukan gelombang gravitasi permukaan, yang memberikan pergerakan air dari yang kecil ke arah perambatan gelombang sehingga terbentuklah arus di laut. Semakin cepat kecepatan angin, semakin besar gaya gesekan yang bekerja pada permukaan laut, dan semakin besar arus permukaan. Dalam proses gesekan antara angin  dengan permukaan laut dapat menghasilkan gerakan air yaitu pergerakan air laminar dan pergerakan air turbulen (Supangat,2003).

Gaya Viskositas pada permukaan laut ditimbulkan karena adanya pergerakan angin pada permukaan laut sehingga menyebabkan pertukaran massa air yang berdekatan secara periodik, hal ini disebabkan karena perbedaan tekanan pada fluida. Gaya viskositas dapat dibedakan menjadi dua gaya yaitu viskositas molecular dan viskositas eddy. Gesekan dalam pergerakan fluida hasil dari transfer momentum diantara bagian-bagian yang berbeda dari fluida. Dalam pergerakan fluida dalam aliran laminer, transfer momentum terjadi hasil transfer antara batas yang berdekatan yang disebut viskositas molekular. Di permukaan laut, gerakan air tidak pernah laminer, tetapi turbulen sehingga kelompok-kelompok air, bukan molekul individu, ditukar antara satu bagian fluida ke yang lain. Gesekan internal yang dihasilkan lebih besar dari pada yang disebabkan oleh pertukaran molekul individu dan disebut viskositas eddy.

Gaya Coriolis mempengaruhi aliran massa air, dimana gaya ini akan membelokan arah angin dari arah yang lurus. Gaya ini timbul sebagai akibat dari perputaran bumi pada porosnya. Gaya Coriolis ini yang membelokan arus dibagian bumi utara kekanan dan dibagian bumi selatan kearah kiri. Pada saat kecepatan arus berkurang, maka tingkat perubahan arus yang disebabkan gaya Coriolis akan meningkat. Hasilnya akan dihasilkan sedikit pembelokan dari arah arus yang relaif cepat di lapisan permukaan dan arah pembelokanya menjadi lebih besar pada aliran arus yang kecepatanya makin lambat dan mempunyai kedalaman makin bertambah besar. Akibatnya akan timbul suatu aliran arus dimana makin dalam suatu perairan maka arus yang terjadi pada lapisan-lapisan perairan akan dibelokkan arahnya. Hubungan ini dikenal sebagai Spiral Ekman, Arah arus menyimpang 450 dari arah angin dan sudut penyimpangan. bertambah dengan bertambahnya kedalaman (Supangat, 2003).
Gambar 1.Pola arus spiral Ekman


Gaya gradien tekanan horizontal sangat dipengaruhi oleh tekanan, massa air, kedalaman dan juga densitas dari massa air tersebut, yang mana jika densitas laut homogen, maka gaya gradien tekanan horizontal adalah sama untuk kedalaman berapapun. Jika tidak ada gaya horizontal yang bekerja, maka akan terjadi percepatan yang seragam dari tekanan tinggi ke tekanan yang lebih rendah.
Gambar 2. Gaya Gradien Tekanan Horizontal


Gelombang-gelombang yang panjang pada lautan menghasilkan peristiwa pasang surut air laut. Pasang surut ini menimbulkan pergerakan massa air yang mana prosesnya dipengaruhi oleh gaya tarik bulan, matahari dan benda angkasa lainya selain itu juga dipengaruhi oleh gaya sentrifugal dari bumi itu sendiri.
Upwelling
Upwelling merupakan fenomena oseanografi yang melibatkan wind-driven motion yang kuat, dingin dan biasanya membawa massa air yang kaya akan nutrien ke arah permukaan laut. Upwelling adalah fenoma atau kejadian yang berkaitan dengan gerakan naiknya massa air laut. Gerakan vertikal ini adalah bagian integrasi dari sirkulasi laut tetapi ribuan sampai jutaan kali lebih kecil dari arus horizontal. Gerakan vertikal ini terjadi akibat adanya stratifikasi densitas air laut karena dengan penambahan kedalaman mengakibatkan suhu menurun dan densitas meningkat yang menimbulkan energi untuk menggerakkan massa air secara vertikal.  Laut juga terstratifikasi oleh faktor lain, seperti kandungan nutrien yang semakin meningkat seiring pertambahan kedalaman. Dengan demikian adanya gerakan massa air vertikal akan menimbulkan efek yang signifikan terhadap kandungan nutrien pada lapisan kedalaman tertentu.
Setidaknya ada lima tipe upwelling yaitu coastal upwelling, large-scale wind-driven upwelling in the ocean interior, upwelling associated with eddies, topographically-associated upwelling, and broad-diffusive upwelling in the ocean interior.
Coastal Upwelling

Coastal upwelling adalah tipe yang paling banyak memiliki hubungan dengan aktivitas manusia dan memberikan banyak pengaruh terhadapa produktivitas perikanan di dunia, seperti ikan pelagis kecil (sardines, anchovies, dll.). Laut dalam kaya akan nutrien termasuk nitrate and phosphate, yang merupakan hasil dari dekomposisi materi organik (dead/detrital plankton) dari permukaan laut.
Ketika sampai ke permukaan, nutrien tersebut digunakan oleh fitoplankton, beserta CO2 terlarut dan dan energi cahaya matahari untuk menghasilkan bahan organik melalui proses fotosintesis. Daerah Upwelling memiliki produktivitas yang tinggi dibanding dengan wilayah lainnya. Hal ini berkaitan dengan rantai makanan, karena fitoplankton berada pada level dasar pada rantai makanan di laut. Daearah dari upwelling antara lain pantai Peru, Chile, Laut arabwestern South Africa, eastern New Zealand, southeastern Brazil dan pantai California.
Adapun rantai makanan di laut adalah sebagai berikut :
Phytoplankton -> Zooplankton -> Predatory zooplankton -> Filter feeders -> Predatory fish
Karena ini menjadi sebuah rantai makanan, ini berarti bahwa setiap spesies adalah spesies kunci dalam zona upwelling. Bagian kunci dari oseanografi fisika yang menimbulkan coastal upwelling adalah efek Coriolis yang didorong oleh wind-driven yang derung diarahkan ke sebelah kanan di belahan bumi utara dan ke arah kiri di belahan bumi selatan.

Equatorial Upwelling
Fenomena yang sama terjadi di ekuator. Apapun lokasinya ini merupakan hasil dari divergensi, massa air yang nutrien terangkat dari lapisan bawah dan hasilnya ditandai oleh fakta bahwa pada daerah ekuator di pasifik memiliki konsentrasi fitoplankton yang tinggi.
Southern Ocean Upwelling
Upwelling dalam skala besar juga terjadi di Southern Ocean. Di sana, dipengaruhi angin yang kuat dari barat dan timur yang bertiup mengelilingi Antarctika, yang mengakibatkan perubahan yang signifikan terhadap aliran massa air yang menuju ke utara. Sebenarnya tipe ini masih termasuk ke dalam coastal upwelling. Ketika tidak ada daratan antara Amerika Selatan dengan Semenanjung Antartika, sejummah massa air terangkat dari lapisan dalam. Dalam banyak pengamatan dan sintesis model numerik, upwelling samudra bagian Selatan merupakan sarana utama untuk mengaduk material lapisan dalam ke permukaan.Beberapa model sirkulasi laut menunjukkan bahwa dalam skala luas upwelling terjadi di daerah tropis, karena didorong tekanan air mengalir berkumpul ke arah lintang rendah dimana terdifusi dengan lapisan hangat dari permukaan.

Tropical cyclone upwelling
Upwelling juga bisa disebabkan oleh tropical cyclone yang melanda suatu wilayah laut, biasanya apabila bertiup dengan kecepatannya kurang dari 5 mph (8 km/h).

Artificial Upwelling
Upwelling tipe jenis ini dihasilkan oleh perangkat yang menggunakan energi gelombang laut atau konversi energi panas laut untuk memompa air ke permukaan. Perangkat seperti telah dilakukan untuk memproduksi plankto.
Non-oceanic upwelling
Upwellings juga terjadi di lingkungan lainnya, seperti danau, magma dalam mantel bumi. Biasanya akibat dari konveksi.
Spiral Ekman
Ekman spiral merujuk ke struktur arus atau angin di dekat garis batas horisontal  yang arah alirannya berputar dan bergerak menjauh. Istilah Ekman Spiral ini berasal dari seorang ilmuwan kelautan Swedia yang bernama Vagn Walfrid Ekman. Defleksi dari arus permukaan pertama kali ditemukan oleh  ilmuwan oseanografi  Norwegia yang bernama  Fridtjof Nansen ketika berlangsungnya ekspedisi Fram (1893-1896).Efek dari Ekman Spiral ini adalah akibat efek Coriolis yang menyebabkan benda dipaksa bergerak ke kanan pada belahan bumi utara dan ke arah kiri pada belahan bumi selatan. Dengan demikian ketika angin berhembus pada permukaan laut di belahan bumi utara, arus permukaan bergerak kearah kanan dari arah angiin.
Diagram yang di sebelah kanan menunjukkan gaya yang terkait dengan Ekman spiral. Gaya yang bekerja di atas permukaan yang diberi warna merah (sebagai akibat adanya hembusan angin di permukaan air),  gaya Coriolis (di sudut kanan dari gaya yang bekerja di atas permukaan air)  berwarna kuning, dan resultan perpindahan (arus) berwarna merah jambu, yang kemudian menjadi memberikan pengaruh pada lapisan di bawahnya, dan secara gradual membentuk spiral secara bertahap searah jarum jam dengan gerakan ke arah bawah.
Manfaat Arus
-Perikanan
Gerakan air laut berpengaruh pada gerakan plankton (fitoplankton). Tempat-tempat yang banyak planktonnya biasanya di situ banyak berkumpul ikan. Oleh karena itu bagi para nelayan, informasi tentang gerakan air laut dapat dimanfaatkan untuk mendetek si tempat-tempat berkumpulnya berbagai jenis ikan.
-Pariwisata
Olahraga selancar, dayung, diving, lomba perahu layar dan lain-lain yang banyak memperhitungkan faktor gerakan air laut sangat diminati oleh para wisatawan. Olahraga selancar angin misal nya, memerlukan tempat yang gelombangnya besar.
-Pertanian Laut
Informasi tentang gerakan air laut sangat diperlukan bagi para petani yang bergerak di bidang pertanian laut. Sebagai contoh para petani yang melakukan usaha di bidang pertanian laut (seperti budidaya rumput laut, budidaya kerang, mutiara dan lainlain), kalau tidak memperhitungkan gerakan air laut, maka hasil pertaniannya akan hanyut terbawa oleh air laut sehingga mengalami gagal panen.
- Pelayaran
Informasi tentang gerakan air laut sangat diperlukan dalam bidang pelayaran terutama kapal/perahu yang menggunakan layar. Kapal besar sekalipun pada prinsipnya dalam perjalanan pelayarannya tidak mau berbenturan dengan ombak maupun arus sehingga informasi tentang gerakan air laut sangat diperlukan.
- Energi (pembangkit tenaga listrik)
Belanda dan Perancis merupakan contoh negara yang telah memanfaatkan gerakan air laut sebagai sumber energi (yaitu sebagai pembangkit tenaga listrik). Sedangkan di Indonesia hal ini masih dalam tahap uji coba. Badan Pengkajian dan Penerapan Teknologi (BPPT) bekerja sama dengan pemerintah Belanda kini sedang melakukan uji coba membangun proyek pembangkit tenaga listrik dengan memanfaatkan gerakan air laut di selat Bali.

2. Gelombang Laut
Gelombang laut atau ombak merupakan gerakan air laut yang paling umum dan mudah kita amati. 
Helmholts menerangkan prinsip dasar terjadinya gelombang laut sebagai berikut: Jika ada dua massa benda yang berbeda kerapatannya (densitasnya) bergesekan satu sama lain, maka pada bidang geraknya akan terbentuk gelombang. Gelombang terjadi karena beberapa sebab, antara lain:
Karena angin. Gelombang terjadi karena adanya gesekan angin di permukaan, oleh karena itu arah gelombang sesuai dengan arah angin.
Karena menabrak pantai. Gelombang yang sampai ke pantai akan terjadi hempasan dan pecah. Air yang pecah itu akan terjadi arus balik dan membentuk gelombang, oleh karena itu arahnya akan berlawanan dengan arah datangnya gelombang.
Karena gempa bumi. Gelombang laut terjadi karena adanya gempa di dasar laut. Gempa terjadi karena adanya gunung laut yang meletus atau adanya getaran/ pergeseran kulit bumi di dasar laut. Gelombang yang ditimbulkan biasanya besar dan sering disebut dengan gelombang “tsunami”. Contohnya ketika gunung Krakatau meletus pada tahun 1883, menyebabkan terjadinya gelombang tsunami yang banyak menimbulkan banyak kerugian.
Dapat dikatakan arus merupakan derasnya aliran air laut, baik aliran naik turun (vertikal) maupun aliran mendatar (horizontal). Sedangkan gelombang merupakan gerakan naik turunnya air laut. Tititk tertinggi pada gerakan naik disebut puncak gelombang sedangkan titik terrendah pada gerakan menurun disebut lembah gelombang.

c. Pasang Surut (Ocean Tide)
Pasang naik dan pasang surut merupakan bentuk gerakan air laut yang terjadi karena pengaruh gaya tarik bulan dan matahari terhadap bumi. Hal ini didasarkan pada hukum Newton yang berbunyi:      Dua benda akan terjadi saling tarik menarik dengan kekuatan yang berbanding terbalik dengan pangkat dua jaraknya. Berdasarkan hukum tersebut berarti makin besar/jauh jaraknya makin kecil daya tariknya. Karena jarak dari bumi ke matahari lebih jauh dari pada ke jarak bulan, maka pasang surut permukaan air laut lebih banyak dipengaruhi oleh bulan.
Ada dua macam pasang surut.
1) Pasang Purnama, ialah peristiwa terjadinya pasang naik dan pasang surut tertinggi (besar). Pasang besar terjadi pada tanggal 1 (berdasarkan kalender bulan) dan pada tanggal 14 (saat bulan purnama). Pada kedua tanggal tersebut posisi Bumi – Bulan – Matahari berada satu garis (konjungsi) sehingga kekuatan gaya tarik bulan dan matahari berkumpul menjadi satu menarik permukaan bumi. Permukaan bumi yang menghadap ke bulan mengalami pasang naik besar. Sedangkan permukaan bumi yang tidak menghadap ke bulan mengalami pasang surut besar.
2) Pasang Perbani, ialah peristiwa terjadinya pasang naik dan psang surut terendah (kecil). Pasang kecil terjadi pada tanggal 7 dan 21 kalender bulan. Pada kedua tanggal tersebut posisi M a t a h a r i – B u l a n –  B u m i membentuk sudut 90°. Gaya tarik Bulan dan Matahari terhadap Bumi berlawanan arah sehingga kekuatannya menjadi berkurang (saling melemahkan) dan terjadilah pasang terendah (rendah).Terjadinya peristiwa pasang surut permukaan air laut sangat bermanfaat bagi kehidupan manusia, antara lain: untuk kepentingan penelitian, usaha pertambakan, kepentingan militer misalnya untuk mengatur pendaratan pasukan katak, sumber energi listrik, usaha pertanian lahan pasang surut.

Pasang Surut
1. Definisi Pasang Surut
Menurut Pariwono (1989), fenomena pasang surut diartikan sebagai naik turunnya muka laut secara berkala akibat adanya gaya tarik benda-benda angkasa terutama matahari dan bulan terhadap massa air di bumi. Sedangkan menurut Dronkers (1964) pasang surut laut merupakan suatu fenomena pergerakan naik turunnya permukaan air laut secara berkala yang diakibatkan oleh kombinasi gaya gravitasi dan gaya tarik menarik dari benda-benda astronomi terutama oleh matahari, bumi dan bulan. Pengaruh benda angkasa lainnya dapat diabaikan karena jaraknya lebih jauh atau ukurannya lebih kecil.

Pasang surut yang terjadi di bumi ada tiga jenis yaitu: pasang surut atmosfer (atmospheric tide), pasang surut laut (oceanic tide) dan pasang surut bumi padat (tide of the solid earth).
Pasang surut laut merupakan hasil dari gaya tarik gravitasi dan efek sentrifugal.  Efek sentrifugal adalah dorongan ke arah luar pusat  rotasi.  Gravitasi  bervariasi secara langsung dengan massa tetapi berbanding terbalik terhadap jarak.  Meskipun ukuran bulan lebih kecil dari matahari, gaya tarik gravitasi bulan dua kali lebih besar daripada gaya tarik matahari dalam membangkitkan pasang surut laut karena jarak bulan lebih dekat daripada jarak matahari ke bumi.  Gaya tarik gravitasi menarik air laut ke arah bulan dan matahari dan menghasilkan dua tonjolan (bulge) pasang surut gravitasional di laut.  Lintang dari tonjolan pasang surut ditentukan oleh deklinasi, sudut antara sumbu rotasi bumi dan bidang orbital bulan dan matahari.

2. Teori Pasang Surut
2.1  Teori Kesetimbangan (
Equilibrium Theory)

 
Teori kesetimbangan pertama kali diperkenalkan oleh Sir Isaac Newton (1642-1727).  Teori ini menerangkan sifat-sifat pasut secara kualitatif.  Teori terjadi pada bumi ideal yang seluruh permukaannya ditutupi oleh air dan pengaruh kelembaman (
Inertia) diabaikan. Teori ini menyatakan bahwa naik-turunnya permukaan laut sebanding dengan gaya pembangkit pasang surut (King, 1966).  Untuk memahami gaya pembangkit passng surut dilakukan dengan memisahkan pergerakan sistem bumi-bulan-matahari menjadi 2 yaitu, sistem bumi-bulan dan sistem bumi matahari.
Pada teori kesetimbangan bumi diasumsikan tertutup air dengan kedalaman dan densitas yang sama dan naik turun muka
laut sebanding dengan gaya pembangkit pasang surut atau GPP (Tide Generating Force) yaitu Resultante gaya tarik bulan dan gaya sentrifugal, teori ini berkaitan dengan hubungan antara laut, massa air yang naik, bulan, dan matahari. Gaya pembangkit pasut ini akan menimbulkan air tinggi pada dua lokasi dan air rendah pada dua lokasi (Gross, 1987).

2.2  Teori Pasut Dinamik (
Dynamical Theory)
Pond dan Pickard (1978) menyatakan bahwa dalam teori ini lautan yang homogen masih diasumsikan menutupi seluruh bumi pada kedalaman yang konstan, tetapi gaya-gaya tarik periodik dapat membangkitkan gelombang dengan periode sesuai dengan konstitue-konstituennya.  Gelombang pasut yang terbentuk dipengaruhi oleh GPP, kedalaman dan luas perairan, pengaruh rotasi bumi, dan pengaruh gesekan dasar. Teori ini pertama kali dikembangkan oleh Laplace (1796-1825). Teori ini melengkapi teori kesetimbangan sehingga sifat-sifat pasut dapat diketahui secara kuantitatif.  Menurut teori dinamis, gaya pembangkit pasut menghasilkan gelombang pasut (
tide wive) yang periodenya sebanding dengan gaya pembangkit pasut.  Karena terbentuknya gelombang, maka terdapat faktor lain yang perlu diperhitungkan selain GPP. Menurut Defant (1958), faktor-faktor tersebut adalah :
• Kedalaman perairan dan luas perairan
• Pengaruh rotasi bumi (gaya Coriolis)
• Gesekan dasar
Rotasi bumi menyebabkan semua benda yang bergerak di permukaan bumi akan berubah arah (
Coriolis Effect).  Di belahan bumi utara benda membelok ke kanan, sedangkan di belahan bumi selatan benda membelok ke kiri.  Pengaruh ini tidak terjadi di equator, tetapi semakin meningkat sejalan dengan garis lintang dan mencapai maksimum pada kedua kutub.  Besarnya juga bervariasi tergantung pada kecepatan pergerakan benda tersebut.
Menurut Mac Millan (1966) berkaitan dengan dengan fenomeana pasut, gaya Coriolis mempengaruhi
arus pasut. Faktor gesekan dasar dapat mengurangi tunggang pasut dan menyebabkan keterlambatan fase (Phase lag) serta mengakibatkan persamaan gelombang pasut menjadi non linier semakin dangkal perairan maka semaikin besar pengaruh gesekannya.

3. Faktor Penyebab Terjadinya Pasang Surut

Faktor-faktor yang menyebabkan terjadinya pasang surut berdasarkan  teori kesetimbangan adalah rotasi bumi pada sumbunya, revolusi bulan terhadap matahari, revolusi bumi terhadap matahari. Sedangkan berdasarkan teori dinamis adalah kedalaman dan luas perairan, pengaruh rotasi bumi (gaya coriolis), dan gesekan dasar. Selain itu juga terdapat beberapa faktor lokal yang dapat mempengaruhi pasut disuatu perairan seperti, topogafi dasar
laut, lebar selat, bentuk teluk, dan sebagainya, sehingga berbagai lokasi memiliki ciri pasang surut yang berlainan (Wyrtki, 1961).


Pasang surut
laut merupakan hasil dari gaya tarik gravitasi dan efek sentrifugal.  Efek sentrifugal adalah dorongan ke arah luar pusat rotasi. Gravitasi bervariasi secara langsung dengan massa tetapi berbanding terbalik terhadap jarak.  Meskipun ukuran bulan lebih kecil dari matahari, gaya tarik gravitasi bulan dua kali lebih besar daripada gaya tarik matahari dalam membangkitkan pasang surut laut karena jarak bulan lebih dekat daripada jarak matahari ke bumi.  Gaya tarik gravitasi menarik air laut ke arah bulan dan matahari dan menghasilkan dua tonjolan (bulge) pasang surut gravitasional di laut.  Lintang dari tonjolan pasang surut ditentukan oleh deklinasi, yaitu sudut antara sumbu rotasi bumi dan bidang orbital bulan dan matahari (Priyana,1994).


Bulan dan matahari keduanya memberikan gaya gravitasi tarikan terhadap bumi yang besarnya tergantung kepada besarnya masa benda yang saling tarik menarik tersebut.
Bulan memberikan gaya tarik (gravitasi) yang lebih besar dibanding matahari.  Hal ini disebabkan karena walaupun masa bulan lebih kecil dari matahari, tetapi posisinya lebih dekat ke bumi. Gaya-gaya ini mengakibatkan air laut, yang menyusun 71% permukaan bumi, menggelembung pada sumbu yang menghadap ke bulan.  Pasang surut terbentuk karena rotasi bumi yang berada di bawah muka air yang menggelembung ini, yang mengakibatkan kenaikan dan penurunan permukaan laut di wilayah pesisir secara periodik.  Gaya tarik gravitasi matahari juga memiliki efek yang sama namun dengan derajat yang lebih kecil. Daerah-daerah pesisir mengalami dua kali pasang dan dua kali surut selama periode sedikit di atas 24 jam (Priyana,1994)

4. Tipe Pasang Surut
Perairan laut memberikan respon yang berbeda terhadap gaya pembangkit pasang surut,sehingga terjadi tipe pasut yang berlainan di sepanjang pesisir. Menurut Dronkers (1964), ada tiga tipe pasut yang dapat diketahui, yaitu :
1. Pasang surut diurnal. Yaitu bila dalam sehari terjadi satu satu kali pasang dan satu kali surut.  Biasanya terjadi di laut sekitar katulistiwa.
2. pasang surut semi diurnal.  Yaitu bila dalam sehari terjadi dua kali pasang dan dua kali surut yang hampir sama tingginya.
3. pasang surut campuran.  Yaitu gabungan dari tipe 1 dan tipe 2, bila bulan melintasi khatulistiwa (deklinasi kecil), pasutnya bertipe semi diurnal, dan jika deklinasi bulan mendekati maksimum, terbentuk pasut diurnal.

Menurut Wyrtki (1961), pasang surut di Indonesia dibagi menjadi 4 yaitu :


1.Pasang surut harian tunggal (Diurnal Tide)
Merupakan pasut yang hanya terjadi satu kali pasang dan satu kali surut dalam satu hari, ini terdapat di Selat Karimata
2.Pasang surut harian ganda (Semi Diurnal Tide)
Merupakan pasut yang terjadi dua kali pasang dan dua kali surut yang tingginya hampir sama dalam satu hari, ini terdapat di Selat Malaka hingga
Laut  Andaman.
3.Pasang surut campuran condong harian tunggal (Mixed Tide, Prevailing Diurnal)
Merupakan pasut yang tiap harinya terjadi satu kali pasang dan satu kali surut tetapi terkadang dengan dua kali pasang dan dua kali surut yang sangat berbeda dalam tinggi dan waktu, ini terdapat di Pantai Selatan Kalimantan dan Pantai Utara Jawa Barat.
4.Pasang surut campuran condong harian ganda (Mixed Tide, Prevailing Semi Diurnal)
Merupakan pasut yang terjadi dua kali pasang dan dua kali surut dalam sehari tetapi terkadang terjadi satu kali pasang dan satu kali surut dengan memiliki tinggi dan waktu yang berbeda, ini terdapat di Pantai Selatan Jawa dan Indonesia Bagian Timur

5.
Arus Pasut

Gerakan air vertikal yang berhubungan dengan naik dan turunnya pasang surut, diiringi oleh gerakan air horizontal yang disebut dengan arus pasang surut.  Permukaan air laut senantiasa berubah-ubah setiap saat karena gerakan pasut, keadaan ini juga terjadi pada tempat-tempat sempit seperti teluk dan selat, sehingga menimbulkan arus pasut(Tidal current).  Gerakan arus pasut dari laut lepas yang merambat ke perairan pantai akan mengalami perubahan, faktor yang mempengaruhinya antara lain adalah berkurangnya kedalaman (Mihardja et,. al 1994).
Menurut King (1962), arus yang terjadi di laut teluk dan laguna adalah akibat massa air mengalir dari permukaan yang lebih tinggi ke permukaan yang lebih rendah yang disebabkan oleh pasut. Arus pasang surut adalah arus yang cukup dominan pada perairan teluk yang memiliki karakteristik pasang (Flood) dan surut atau ebb. Pada waktu gelombang pasut merambat memasuki perairan dangkal, seperti muara sungai atau teluk, maka badan air kawasan ini akan bereaksi terhadap aksi dari perairan lepas.
Pada daerah-daerah di mana arus pasang surut cukup kuat, tarikan gesekan pada dasar laut menghasilkan potongan arus vertikal, dan resultan turbulensi menyebabkan bercampurnya lapisan air bawah secara vertikal.  Pada daerah lain, di mana arus pasang surut lebih lemah, pencampuran sedikit terjadi, dengan demikian stratifikasi (lapisan-lapisan air dengan kepadatan berbeda) dapat terjadi. Perbatasan antar daerah-daerah kontras dari perairan yang bercampur dan terstratifikasi seringkali secara jelas didefinisikan, sehingga terdapat perbedaan lateral yang ditandai dalam kepadatan air pada setiap sisi batas.
6. Alat-alat Pengukuran Pasang Surut
Beberapa alat prngukuran pasang surut diantaranya adalah sebagai berikut :
1.Tide Staff.
Alat ini berupa papan yang telah diberi skala dalam meter atau centi meter.  Biasanya digunakan pada pengukuran pasang surut di lapangan.Tide Staff (papan Pasut) merupakan alat pengukur pasut paling sederhana yang umumnya digunakan untuk mengamati ketinggian muka laut atau tinggi gelombang air laut.  Bahan yang digunakan biasanya terbuat dari kayu, alumunium atau bahan lain yang di cat anti karat.
Syarat pemasangan papan pasut adalah :
1.Saat pasang tertinggi tidak terendam air dan pada surut terendah masih tergenang oleh air
2.Jangan dipasang pada gelombang pecah karena akan bias atau pada daerah aliran sungai (aliran debit air).
3.Jangan dipasang didaerah dekat kapal bersandar atau aktivitas yang menyebabkan air bergerak secara tidak teratur
4.Dipasang pada daerah yang terlindung dan pada tempat yang mudah untuk diamati dan dipasang tegak lurus
5.Cari tempat yang mudah untuk pemasangan misalnya  dermaga sehingga papan mudah dikaitkan
6.Dekat dengan bench mark atau titik referensi lain yang ada sehingga data pasang surut mudah untuk diikatkan terhadap titik referensi
7.Tanah dan dasar laut atau sungai tempat didirikannya papan harus stabil
8.Tempat didirikannya papan harus dibuat pengaman dari arus dan sampah

2.Tide gauge.
Merupakan perangkat untuk mengukur perubahan muka laut secara mekanik dan otomatis.  Alat ini memiliki sensor yang dapat mengukur ketinggian permukaan air laut yang kemudian direkam ke dalam komputer.  Tide gauge terdiri dari dua jenis yaitu :
Floating tide gauge (self registering)
Prinsip kerja alat ini berdasarkan naik turunnya permukaan air laut yang dapat diketahui melalui pelampung yang dihubungkan dengan alat pencatat (recording unit).  Pengamatan pasut dengan alat ini banyak dilakukan, namun yang lebih banyak dipakai adalah dengan cara rambu pasut.
Pressure tide gauge (self registering)
Prinsip kerja pressure tide gauge hampir sama dengan floating tide gauge, namun perubahan naik-turunnya air laut direkam melalui perubahan tekanan pada dasar laut yang dihubungkan dengan alat pencatat (recording unit).  Alat ini dipasang sedemikian rupa sehingga selalu berada di bawah permukaan air laut tersurut, namun alat ini jarang sekali dipakai untuk pengamatan pasang surut.
3.Satelit
Sistem satelit altimetri berkembang sejak tahun 1975 saat diluncurkannya sistem satelit Geos-3.  Pada saat ini secara umum sistem satelit altimetri mempunyai tiga objektif ilmiah jangka panjang yaitu mengamati sirkulasi lautan global, memantau volume dari lempengan es kutub, dan mengamati perubahan muka laut rata-rata (MSL) global. Prinsip Dasar Satelit Altimetri adalah satelit altimetri dilengkapi dengan pemancar pulsa radar (transmiter), penerima pulsa radar yang sensitif (receiver), serta jam berakurasi tinggi.  Pada sistem ini, altimeter radar yang dibawa oleh satelit memancarkan pulsa-pulsa gelombang elektromagnetik (radar) kepermukaan laut.  Pulsa-pulsa tersebut dipantulkan balik oleh permukaan laut dan diterima kembali oleh satelit.
Prinsip penentuan perubahan kedudukan muka laut dengan teknik altimetri yaitu pada dasarnya satelit altimetri bertugas mengukur jarak vertikal dari satelit ke permukaan laut. Karena tinggi satelit di atas permukaan ellipsoid referensi diketahui maka tinggi muka laut (Sea Surface Height atau SSH) saat pengukuran dapat ditentukan sebagai selisih antara tinggi satelit dengan jarak vertikal.  Variasi muka laut periode pendek harus dihilangkan sehingga fenomena kenaikan muka laut dapat terlihat melalui analisis deret waktu (time series analysis).  Analisis deret waktu dilakukan karena kita akan melihat variasi temporal periode panjang dan fenomena sekularnya (http://gdl.geoph.itb.ac.id)
7.  Pasang Surut di Perairan Indonesia
Indonesia merupakan negara kepulauan yang dikelilingi oleh dua lautan yaitu Samudera Indonesia dan Samudera Pasifik serta posisinya yang berada di garis katulistiwa sehingga kondisi pasang surut, angin, gelombang, dan arus laut cukup besar.  Hasil pengukuran tinggi pasang surut di wilayah laut Indonesia menunjukkan beberapa wilayah lepas laut pesisir daerah Indonesia memiliki pasang surut cukup tinggi.  Gambar 15 memperlihatkan peta pasang surut wilayah lautan Indonesia. Dari gambar tersebut tampak beberapa wilayah lepas laut pesisir Indonesia yang memiliki pasang surut cukup tinggi antara lain wilayah laut di timur Riau, laut dan muara sungai antara Sumatera Selatan dan Bangka, laut dan selat di sekitar pulau Madura, pesisir Kalimantan Timur, dan muara sungai di selatan pulau Papua (muara sungai Digul) (Sumotarto, 2003).
Keadaan pasang surut di perairan Nusantara ditentukan oleh penjalaran pasang surut dari Samudra Pasifik dan Hindia serta morfologi pantai dan batimeri perairan yang kompleks dimana terdapat banyak selat, palung dan laut yang dangkal dan laut dalam.  Keadaan perairan tersebut membentuk pola pasang surut yang beragam.  Di Selat Malaka pasang surut setengah harian (semidiurnal) mendominasi tipe pasut di daerah tersebut.  Berdasarkan pengamatan pasang surut di Kabil, Pulau Batam diperoleh bilangan Formzhal sebesar 0,69 sehingga pasang surut di Pulau Batam dan Selat Malaka pada umumnya adalah pasut bertipe campuran dengan tipe ganda yang menonjol.  Pasang surut harian (diurnal) terdapat di Selat Karimata dan Laut Jawa. Berdasarkan pengamatan pasut di Tanjung Priok diperoleh bilangan Formzhal sebesar 3,80.  Jadi tipe pasut di Teluk Jakarta dan laut Jawa pada umumnya adalah pasut bertipe tunggal.  Tunggang pasang surut di perairan Indonesia bervariasi antara 1 sampai dengan 6 meter.  Di Laut Jawa umumnya tunggang pasang surut antara 1 – 1,5 m kecuali di Selat madura yang mencapai 3 meter.  Tunggang pasang surut 6 meter di jumpai di Papua (Diposaptono, 2007).

Sumber : http://geografi-ump.blogspot.com/2011/11/gerakan-air-laut.html
              http://id.wikipedia.org/wiki/Arus_air_laut

Perairan Darat

Menurut jenisnya Perairan Darat dapat di golongkan menjadi beberapa bagian yaitu :
1.      Sungai
Adalah saluran alami yang berfungsi mengalirkan air hujan, air tanah, air salju yang mencair ke danau atau ke laut.
Jenis-Jenis Sungai
a.       Berdasarkan jenis sumber airnya
-          Sungai hujan
-          Sungai mata air
-          Sungai gletser ( dari salju yang mencairr )
-          Sungai campuran ( campuran dari ketiga sumber diatas )
b.      Berdasarkan volume airnya
-          Sungai ephemeral ( sungai yang mengalir saat terjadinya hujan atau setelah hujan )
-          Sungai intermiten ( sungai yang mengalir hanya pada saat musim penghujan )
-          Sungai pherenial ( sungai yang mengalir sepanjang tahun )
c.       Berdasarkan arah aliran airnya
-          Sungai konsekuen ( arah alirannya sesuai dengan struktur geologisnya )
-          Sungai subsekuen ( arah aliran tegak lurus dengan sungai konsekuen )
-          Sungai obsekuen  ( arah alirannya berlawanan dengan sungai konsekuen dan menuju sungai subsekuen )
-          Sungai resekuen ( arah alirannya sesuia dengan sungai konsekuen )
-          Sungai insekuen ( sungai yang arah alirannya tidak teratur )
d.      Berdasarkan struktur geologinya
-          Sungai antiseden ( sungai yang mampu mempertahankan alirannya )
-          Sungai reverse  ( sungai yang tidak mampu mengimbangi pengangkatan sehingga terjadi perubahan arah aliran )
-          Sungai superposed ( sungai yang mengalir pada suatu dartan paneplain sehingga struktur batuan tersingkap )
Pola Aliran Sungai
1.      Pola radial
Dapat dibedakan menjadi pola radial memusat ( Sentripetal ) dan pola radial menyebar ( Sentrifugal ). Pola radial memusat terjadi di daerah yang berupa basin sedangkan pola radial menyebar terjadi di daerah yang berbentuk kubah ( dome ).

2.      Pola dendritik
Pola aliran yang tidak teratur. Anak sungai bermuara ke induk sungai dengan sudut tumpul . pola ini ada pada daerah dataran rendah
Pola Aliran Dendritik
Pola Aliran Dendritik
3.      Pola trellis
Pola ini terdapat pada daerah lipatan. Aliran dari anak sungai sejajar dengan sungai induk , dan alirannya bertemu membentuk sudut siku-siku
Pola Aliran Trellis
Pola Aliran Trellis
4.     Pola annular
Annular adalah sungai utama melingkar dengan anak sungai yang membentuk sudut hampir tegak lurus. Berkembang di dome dengan batuan yang berseling antara lunak dan keras.
Pola aliran annular
Pola aliran annular

4.      Pola rectangular
Pola aliran terjadi pada daerah patahan. Anak-anak sungai yang menuju induk sungai membentuk sudut siku-siku
Pola Aliran Rectangular
Pola Aliran Rectangular

2.      Danau
Adalah tubuh air dalam jumlah besar yang menempati basin di wilayah daratan. Suatu genangan dapat disebut danau jika paling tidak memiliki tiga kriteria yaitu :
1. Mempunyai permukaan air yang cukup luas sehingga mampu menimbulkan gelombang
2. Air cukup dalam sehingga terdapat strata suhu pada kedalaman air tersebut
4. Vegetasi yang mengapung tidak cukup untuk menutupi seluruh permukaan danau
Danau terjadi dari berbagai sebab
a.       Danau Glasial
terjadi dari akibat adanya erosi dan pengendapan akibat aktivitas gletser di lereng-lereng bukit atau pegunungan
Danau Glasial Akibat Dari Mencairnya Es
Danau Glasial Akibat Dari Mencairnya Es
b.      Danau Vulkanik
Terbentuk akibat adanya aktivitas vulkanik. Kaldera yang terbentuk akibat letusan berapi tergenang oleh air hujan. Danau seperti ini disebu juga danau crater
Danau Maninjau merupakan contoh danau vulkanik
Danau Maninjau merupakan contoh danau vulkanik
c.       Danau Tektonik
Terbentuk akibat adanya gerakan lempeng tektonik, gerakan ini dapat menyebabkan terjadinya patahan sehingga terbentuk lembah kemudian terisi air hujan dan membentuk suatu genangan yang disebut danau
Danau Singkarak merupakan contoh danau tektonik
Danau Singkarak merupakan contoh danau tektonik
d.      Danau Tekto-Vulkanik
Terbentuk akibat adanya gerakan tektonik dan vulkanik sehingga terjadi patahan dan gunung berapi. Bekas gunung berapi menjadi suatu basin yang kemudian terisi air hujan dan terjadi danau
Danau Toba merupakan contoh danau tekto-vulkanik
Danau Toba merupakan contoh danau tekto-vulkanik
e.       Danau Karst
Terbentuk akibat adanya prose solusi atau pelarutan kapur oleh air sehingga terbentuk suatu dolin/dolina jika dolin ini terisi air hujan maka terbentuk danau
Danau Lais da Rims di Swiss merupakan contoh danau karst
Danau Lais da Rims di Swiss merupakan contoh danau karst
f.       Danau Aliran
Terjadi akibat pemotongan meander sehingga terbentuk sisa aliran yang tertinggal. Danau aliran ini juga dapat terjadi akibat sedimentasi yang besar sehingga menutup muara anak sungai dan terbentu genangan
g.      Danau Laguna
Terjadi akibat kombinasi antara angin dan ombak yang menyebabkan terjadinya tanggul pasir di sepanjang pantai dan kemudian membentuk suatu laguna
Danau San Juan merupakan contoh danau laguna
Danau San Juan merupakan contoh danau laguna
h.      Danau Buatan
Terjadi akibat pembendungan sungai oleh manusia
Waduk Gajah Mungkur merupakan contoh danau buatan
Waduk Gajah Mungkur merupakan contoh danau buatan
3.      Telaga
Telaga hampir sama dengan danau, hanya luasnya lebih sempit. Telaga tidak memiliki tingkatan suhu pada kedalamannya dan belum ada gelombang yang mengabrasi. Munculnya telaga sama dengan awal terjadinya sebuah danau
telaga ngebel di Ponorogo dimanfaatkan sebagai tempat rekreasi
telaga ngebel di Ponorogo dimanfaatkan sebagai tempat rekreasi
4.      Rawa
Adalah suatu daerah datar atau sedikit cekung yang tergenang oleh air. Rawa airnya bersifat asam, warna airnya kemerahan, dan kurang baik untuk irigasi.
5.      Air tanah
Adalah air yang terdapat di bawah permukaan tanah yang dibatasi oleh satu atau dua lapisan tanah atau batuan yang kedap air. Pada saat ini air tanah mempunyai peranan yan penting untuk mencukupi kebutuhan hidup manusia

Sumber : http://pesonageografi.wordpress.com/2011/02/19/perairan-darat/

Perairan Laut

Permukaan planet Bumi yang luasnya mencapai 510 juta km2, sekitar 71% merupakan bentang perairan laut, sedangkan wilayah daratnya hanya sekitar 29% saja.

Berdasarkan Proses Terjadinya 

  1. Laut Transgresi ialah kawasan laut dangkal yang terjadi akibat kenaikan muka air laut pada saat pencairan es di Bumi sekitar 2–3 juta tahun yang lalu.
  2. Laut Ingresi terjadi karena tanah turun akibat gaya endogen yang menimbulkan patahan. Contohnya, Laut Karibia, Laut Tengah, dan Laut Jepang. 

Berdasarkan Letaknya
  1. Laut Pedalaman, yaitu laut yang letak atau posisinya di tengah-tengah benua atau dikelilingi daratan. Contohnya Laut Hitam, Laut Baltik, Laut Kaspia, dan Laut Mati. 
  2. Laut Tepi, yaitu laut-laut yang letaknya di tepian benua yang memisahkan benua tersebut dengan Samudra. Contohnya antara lain Laut Jepang, Laut Korea, Laut Arab, Teluk Benggala, dan laut-laut tepi di sekitar pantai Benua Amerika. 
  3. Laut Tengah, yaitu laut yang memisahkan dua benua atau dengan kata lain yang terletak di antara dua benua. Contoh laut tengah, antara lain Laut Mediteran, Selat Gibraltar, laut-laut di perairan Indonesia, dan laut-laut di kawasan Karibia. 

Gambar 1 : Laut berdasarkan letaknya

Zona Kedalaman Laut 

Berdasarkan kedalamannya laut dibedakan menjadi 4 wilayah (zona) yaitu: zona Lithoral, zona Neritic, zona Bathyal dan zona Abysal. 
  1. Zona Lithoral, adalah wilayah pantai atau pesisir atau shore. Di wilayah ini pada saat air pasang tergenang air dan pada saat air laut surut berubah menjadi daratan. Oleh karena itu wilayah ini sering juga disebut wilayah pasang-surut.
  2. Zona Neritic (wilayah laut dangkal), yaitu dari batas wilayah pasang surut hingga kedalaman 200 m. Pada zona ini masih dapat ditembus oleh sinar matahari sehingga pada wilayah ini paling banyak terdapat berbagai jenis kehidupan baik hewan maupun tumbuh-tumbuhan. Contohnya laut Jawa, laut Natuna, selat Malaka dan laut-laut di sekitar kepulauan Riau. 
  3. Zona Bathyal (wilayah laut dalam), adalah wilayah laut yang memiliki kedalaman antara 200 m hingga 1800 m. Wilayah ini tidak dapat tertembus sinar matahari, oleh karena itu kehidupan organismenya tidak sebanyak yang terdapat di wilayah Neritic. 
  4. Zone Abyssal (wilayah laut sangat dalam), yaitu wilayah laut yang memiliki kedalaman di atas 1800 m. Di wilayah ini suhunya sangat dingin dan tidak ada tumbuh-tumbuhan. Jenis hewan yang dapat hidup di wilayah ini sangat terbatas. 

Gambar 2. Zona kedalamana laut
Wilayah Laut Indonesia

Indonesia memiliki tiga batas wilayah laut yaitu Batas Laut Teritorial, Batas Landas Kontinen dan Zona Ekonomi Eksklusif (ZEE).

Laut Nusantara merupakan laut yang berada di antara pulau-pulau yang dibatasi oleh garis dasar pulau tersebut. Sedangkan Batas Laut Teritorial merupakan batas kedaulatan penuh negara Indonesia artinya negara-negara lain tidak diperbolehkan memasuki wilayah ini tanpa izin negara kita.

Landas Kontinen (Continental Shelf) adalah bagian dari benua yang terendam oleh air laut. Untuk menentukan apakah dasar laut merupakan kelanjutan dari suatu benua, biasanya dilihat dari struktur batuan pembentuknya (kondisi geologi). Yang paling mudah diamati, landas kontinen memiliki kedalaman tidak boleh lebih dari 150 meter. Sedangkan Batas Landas Kontinen merupakan batas dasar laut yang sumberdaya alamnya dapat dikelola oleh negara yang bersangkutan.

Zona Ekonomi Eklusif adalah zona yang luasnya 200 mil dari garis dasar pantai, yang mana dalam zona tersebut sebuah negara pantai mempunyai hak atas kekayaan alam di dalamnya, dan berhak menggunakan kebijakan hukumnya, kebebasan bernavigasi, terbang di atasnya, ataupun melakukan penanaman kabel dan pipa.

Gambar 3. Wilayah Laut Indonesia

Mengukur Kedalaman Laut 

Ada dua cara yang dapat ditempuh untuk mengukur kedalaman laut yaitu dengan menggunakan teknik bandul timah hitam (dradloading) dan teknik Gema duga atau Echo Sounder atau Echoloading. 
  1. Teknik Bandul Timah Hitam (dradloading) Teknik ini ditempuh dengan menggunakan tali panjang yang ujungnya diikat dengan bandul timah sebagai pemberat. 
  2. Gema duga atau Echo Sounder atau Echoloading. Penggunaan teknik ini didasarkan pada hukum fisika tentang perambatan dan pantulan bunyi dalam air.
RUMUS : 










Gerakan Air Laut 

Ada tiga hal yang akan kita bahas sehubungan dengan gerakan air laut ini yaitu arus laut, gelombang laut dan pasang surut air laut. 
Arus Laut atau sea current adalah gerakan massa air laut dari satu tempat ke tempat lain baik secara vertikal maupun secara horizontal. Menurut letaknya arus dibedakan menjadi dua yaitu arus atas dan arus bawah. Arus atas adalah arus yang bergerak di permukaan laut. Sedangkan arus bawah adalah arus yang ber gerak di bawah permukaan laut. Menurut suhunya dikenal adanya arus panas dan arus dingin. Arus panas adalah arus yang bila suhu nya lebih panas dari daerah yang dilalui. Sedangkan arus dingin adalah arus yang suhunya lebih dingin dari daerah yang dilaluinya. 

Gambar 4. Peta arus laut dunia

Gelombang Laut

Gelombang laut atau ombak merupakan gerakan air laut yang paling umum dan mudah kita amati. Helmholts menerangkan prinsip dasar terjadinya gelombang laut sebagai berikut: Jika ada dua massa benda yang berbeda kerapatannya (densitasnya) bergesekan satu sama lain, maka pada bidang geraknya akan terbentuk gelombang. 

Gambar 5. Gelombang laut

Pasang Surut (Ocean Tide

Pasang naik dan pasang surut merupakan bentuk gerakan air laut yang terjadi karena pengaruh gaya tarik bulan dan matahari terhadap bumi. Hal ini didasarkan pada hukum Newton yang berbunyi: Dua benda akan terjadi saling tarik menarik dengan kekuatan yang berbanding terbalik dengan pangkat dua jaraknya. Berdasarkan hukum tersebut berarti makin besar/jauh jaraknya makin kecil daya tariknya. Karena jarak dari bumi ke matahari lebih jauh dari pada ke jarak bulan, maka pasang surut permukaan air laut lebih banyak dipengaruhi oleh bulan. Ada dua macam pasang surut : 
  1. Pasang Purnama, ialah peristiwa terjadinya pasang naik dan pasang surut tertinggi (besar). Pasang besar terjadi pada tanggal 1 (berdasarkan kalender bulan) dan pada tanggal 14 (saat bulan purnama). Pada kedua tanggal tersebut posisi Bumi - Bulan - Matahari berada satu garis (konjungsi) sehingga kekuatan gaya tarik bulan dan matahari berkumpul menjadi satu menarik permukaan bumi. Permukaan bumi yang menghadap ke bulan mengalami pasang naik besar. Sedangkan permukaan bumi yang tidak menghadap ke bulan mengalami pasang surut besar. 
  2. Pasang Perbani, ialah peristiwa terjadinya pasang naik dan psang surut terendah (kecil). Pasang kecil terjadi pada tanggal 7 dan 21 kalender bulan. Pada kedua tanggal tersebut posisi Matahari-Bulan-Bumi membentuk sudut 90°. 
Gambar 6. Pasang Surut air laut

Tsunami

Aktivitas endogenik terjadi di dasar laut berupa kegiatan gunungapi atau gempa tektonik dapat menyebabkan terjadinya gelombang pasang secara tiba-tiba dengan tinggi gelombang jauh lebih besar dibandingkan dalam keadaan normal. Gelombang pasang air laut semacam ini dinamakan Tsunami. Kedahsyatan tsunami dapat dilihat dari panjang gelombangnya yang dapat mencapai 200 kilometer dengan tinggi gelombang sekitar 30 meter dadan kecepatan rambat gelombang sekitar 800 km/jam.

Gambar 7. Tsunami
Morfologi dan Relief Dasar Laut 

Morfologi Laut adalah keadaan naik turunnya permukaan dasar laut.
Macam-macam bentuk dasar laut :
  1. Landas kontinen (continental shelf), yaitu wilayah laut yang dangkal di sepanjang pantai dengan kedalaman kurang dari 200 meter, dengan kemiringan kira-kira 8,4 %. Landas kontinen merupakan, dasar laut dangkal di sepanjang pantai dan menjadi bagian dari daratan. Contohnya Landas Kontinental Benua Eropa Barat sepanjang 250 km ke arah barat. Dangkalan sahul yang merupakan bagian dari benua Australia dan Pulau Irian, landas kontinen dari Siberia ke arah laut Artetik sejauh 100 km, dan Dangkalan Sunda yang merupakan bagian dari Benua Asia yang terletak antara Pulau Kalimantan, Jawa dan Sumatra. 
  2. Lereng benua (continental slope), merupakan kelanjutan dari continental shelf dengan kemiringan antara 4 % sampai 6 %. Kedalaman lereng benua lebih dari 200 meter. 
  3. Dasar Samudra (ocean floor), meliputi: (1) Deep Sea Plain, yaitu dataran dasar laut dalam dengan kedalaman lebih dari 1000 meter, (2) The Deep, yaitu dasar laut yang terdalam yang berbentuk palung laut (trough). 


Gambar 8. Relief dasar laut
Gambar 9. Morfologi dasar laut


 Macam-Macam Bentukan Dasar Laut


Salinitas 
Salinitas (kadar garam) ialah banyaknya garam dalam gram yang terdapat pada satu liter air laut. Laut airnya terasa asin karena hasil pelapukan dari daratan yang mengandung garam yang dibawa oleh sungai ke laut. Kadar garam biasanya dinyatakan dengan permil (‰) atau perseribu yang menunjukkan berapa gram kandungan mineral dalam setiap 1.000 gram air laut. Misalnya, salinitas Laut Jawa 32‰, hal ini berarti bahwa dalam setiap 1.000 gram air Laut Jawa terlarut kadar garam sebanyak 32 gram. Salinitas rata-rata lautan ialah sekitar 35‰.
Tabel. Kandungan susunan garam di laut
Tinggi rendahnya salinitas air laut tergantung pada hal-hal berikut.
  1. Curah hujan yang terlalu banyak berarti menambah air tawar ke dalam laut. Dengan adanya air tawar yang terlalu banyak, berarti salinitas air laut menjadi rendah. 
  2. Penguapan yang tinggi mengakibatkan akumulasi mineral di laut. Penguapan yang tinggi terdapat pada daerah antara garis balik utara (23° LU) dan garis balik selatan (23° LS). Penguapan berpengaruh terhadap salinitas air laut. Semakin tinggi penguapan semakin tinggi pula kadar garamnya. 
  3. Banyak sedikitnya air sungai yang bermuara di laut Pada musim penghujan, laut mendapat tambahan air tawar dari sungai yang cukup. 
  4. Penambahan air tawar karena pencairan es Pada musim panas (summer) di daerah kutub (baik 66°LS/LU) mengalami penambahan air tawar akibat dari mencairnya es pada kedua kutub tersebut. Kondisi ini menyebabkan salinitas air laut di daerah kutub menjadi rendah.

Sumber : http://smartgeosmanida.blogspot.com/2012/05/perairan-laut.html